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A previous analysis of the average intensity and mean-square intensity

difference of Friedel opposites, confined to the space group P1 [Flack &

Shmueli (2007). Acta Cryst. A63, 257–265], is here extended to all the non-

centrosymmetric space groups. The present analysis presumes purely non-

centrosymmetric content of the unit cell. An important result of this study is that

the average intensity and mean-square intensity difference of Friedel opposites

have the same values for all the non-centrosymmetric space groups as those

previously obtained for the triclinic space group P1. The ratios of average

intensity and root-mean-square intensity difference to their triclinic equivalents

were derived and exemplified for general as well as for special reflections. For

the latter, enhancements were obtained which are shown to be due to those of

average intensity and not to a mechanism related to Friedel opposites being

explicitly considered.

1. Introduction

A detailed analysis of the mean-square Friedel intensity

difference was carried out by Flack & Shmueli (2007) for the

simplest triclinic space group P1, while assuming the

presence of a centrosymmetric substructure. Although this

rigorous approach to the problem is useful for structures

that conform to the symmetry examined, it was by no means

obvious that the results are applicable to, or have a bearing

on, symmetries other than P1. On the contrary, the mean-

square Friedel intensity difference depends on the low

moments of intensity and these are known to be space-

group dependent (e.g. Wilson, 1978). We have therefore

decided to simplify the treatment by omitting the presence of

centrosymmetric and other symmetric substructures,

and eventually carry out the analysis for all the non-

centrosymmetric space groups. The concise version of trigo-

nometric structure factors (Shmueli, 2001) was found very

useful in the early stages of this analysis. So the average

intensity and mean-square intensity difference of Friedel

opposites was found to be the same for all non-

centrosymmetric space groups, presuming a purely non-

centrosymmetric content of the unit cell and general reflec-

tions only. We have also derived the ratios of these quantities

to the corresponding ones for P1 for general reflections as well

as for special reflections in all the space groups. These ratios

furnish the intensity average multiples of interest. Applica-

tions of the results obtained in this study will be reported

elsewhere (Flack & Bernardinelli, 2008).

2. Preliminaries

Let g be the number of asymmetric units in the unit cell, G be

a lattice centering factor equal to 1, 2, 3 or 4 for P-type, A-, B-,

C- or I-type, Rhex-type or F-type lattices, respectively, N be the

number of atoms in the unit cell, N=g be the number of atoms

in the asymmetric unit, and let all the atoms be spherical, have

only isotropic displacement parameters and be located in

general positions, there being no centrosymmetric or any

other symmetric substructure. Let ðPi; tiÞ be the space-group

operator generating the ith asymmetric unit from the refer-

ence unit (that generated by the identity operator). The

structure factor is given by

FðhÞ ¼
PN=g

j¼1

ðfj þ if 00j Þ
Pg

i¼1

exp½2�ihTðPirj þ tiÞ�

�
PN=g

j¼1

ðfj þ if 00j ÞðAj þ iBjÞ; ð1Þ

where

Aj ¼
Pg

i¼1

cos½2�hTðPirj þ tiÞ�

and

Bj ¼
Pg

i¼1

sin½2�hTðPirj þ tiÞ�;



where Aj and Bj are respectively the real and imaginary parts

of the trigonometric structure factor (hereafter t.s.f.) for the

jth atom of the asymmetric unit.

If we expand equation (1), the structure factor for any space

group is given by

FðhÞ ¼
PN=g

j¼1

fjAj þ i
PN=g

j¼1

f 00j Aj þ i
PN=g

j¼1

fjBj �
PN=g

j¼1

f 00j Bj

and introducing the abbreviations

� ¼
PN=g

j¼1

fjAj; �00 ¼
PN=g

j¼1

f 00j Aj;

� ¼
PN=g

j¼1

fjBj; �00 ¼
PN=g

j¼1

f 00j Bj;

we can write

FðhÞ ¼ � þ i�00 þ i� � �00:

Since � and �00 change sign when h changes sign, we have

Fð�hÞ ¼ � þ i�00 � i� þ �00

and hence the mean reduced intensity of Friedel opposites is

Av ¼
1
2 ðjFðhÞj

2
þ jFð�hÞj2Þ

¼ 1
2 ½ð� � �

00Þ
2
þ ð�00 þ �Þ2� þ 1

2 ½ð� þ �
00Þ

2
þ ð�00 � �Þ2�

¼ �2 þ �002 þ �2 þ �002;

and its average is

hAvi ¼ h�
2
i þ h�002i þ h�2

i þ h�002i

¼
PN=g

j¼1

PN=g

k¼1

fj fkAjAk

* +
þ

PN=g

j¼1

PN=g

k¼1

f 00j f 00k AjAk

* +

þ
PN=g

j¼1

PN=g

k¼1

fj fkBjBk

* +
þ

PN=g

j¼1

PN=g

k¼1

f 00j f 00k BjBk

* +

¼
PN=g

j¼1

PN=g

k¼1

½ð fj fk þ f 00j f 00k ÞðhAjAki þ hBjBkiÞ�: ð2Þ

The intensity difference between Friedel opposites is

D ¼ jFðhÞj2 � jFð�hÞj2

¼ ð� � �00Þ2 þ ð�00 þ �Þ2 � ð� þ �00Þ2 � ð�00 � �Þ2

¼ �4��00 þ 4�00�

¼ 4ð�00� � ��00Þ

and the mean-square intensity difference is

hD2
i ¼ 16ðh�002�2

i � 2h��00��00i þ h�2�002iÞ:

We thus have

hD2=16i ¼
PN=g

j¼1

PN=g

k¼1

PN=g

l¼1

PN=g

m¼1

ðf 00j f 00k flfm � 2fjf
00
k flf

00
m þ fjfkf 00l f 00mÞ

� hAjAkBlBmi: ð3Þ

It follows that, for any space group, hAvi and hD2i may be

obtained by calculating hAjAki, hBjBki and hAjAkBlBmi. This

can be done by using explicit or concise expressions for t.s.f.’s

(Lonsdale, 1965; Shmueli, 2001) or, much more generally, as

detailed in the following sections. Since in some instances the

use of t.s.f.’s is mandatory, we show in Appendix A an example

of a calculation of the averages for P212121 and some related

orthorhombic non-centrosymmetric space groups, from the

appropriate t.s.f.’s.

As concerns the averaging process, we have followed

Shmueli & Wilson (2001) using the usual fixed-index approach

based on independence of atomic contributions to the struc-

ture factor, uniform distribution of the atoms throughout the

unit cell and omitting systematic absences.

2.1. A relevant classification of reflections

In this paper, it will be necessary to classify reflections

according to their symmetry properties under the point group

of the crystal. First, the relationship between structure factors

of symmetry-related reflections is

FðPThÞ ¼ FðhÞ expð�2�ihT tÞ; ð4Þ

where ðP; tÞ is a space-group operator and P is an operator of

the underlying point group (Waser, 1955).

For a particular reflection h, there will always be one or

more point-group operators P that leave h invariant and hence

satisfy PTh ¼ h. In this case, from (4), one finds

FðhÞ ¼ FðhÞ expð�2�ihT tÞ; ð5Þ

FðhÞ can be non-zero only if expð�2�ihTtÞ ¼ 1, which can be

so only if hTt is an integer.

If hTt in (5) is not an integer, FðhÞ must vanish and corre-

sponds to a systematically absent reflection.

For each reflection h, the set of all point-group operators for

which PTh ¼ h holds is a subgroup of the point group, called

the isotropy subgroup of h, denoted by Gh (see e.g. xA2 of

Appendix A in Bricogne, 1991) (the isotropy subgroup is

elsewhere called the stabilizer or little co-group). Its order is

denoted by jGhj. Since there is always at least one point-group

operator which obeys PTh ¼ h, jGhj � 1. If jGhj ¼ 1, h is

known as a general reflection and, if jGhj> 1, then h is known

as a special reflection.

A simple example and comments on the isotropy subgroup

are presented in Appendix B.

A reflection h is centric if for some point-group operator we

have PTh ¼ �h. A reflection for which there is no point-group

operator P giving PTh ¼ �h is said to be acentric (see e:g: xA2

of Appendix A in Bricogne, 1991).

3. hhhAviii and hhhD
2
iii for acentric and centric reflections

Tables 2.1.3.1 and 2.1.3.2 of Shmueli & Wilson (2001) present

intensity-distribution effects of various symmetry operations

on selected rows and zones of reflections. Their Table 2.1.3.3

presents average intensity multiples arranged by point groups.

Shmueli & Wilson (2001) should be consulted for an intro-

duction and all background information to this topic. In the

context of the present study, we considered it of importance to

investigate and establish the relevant intensity multiples for

hAvi and hD2i for both general and special reflections.
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It is shown in the following subsections that the mean

intensity and root-mean-square intensity differences of

Friedel opposites, divided by their triclinic equivalents, are

given for any possible reflection, special or general, by

hAvi=� ¼ jGhjG for a centric or an acentric reflection ð6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hD2i=�

p
¼
jGhjG for an acentric reflection

0 for a centric reflection.

�
ð7Þ

The equations for the triclinic equivalents � and � are given in

Flack & Shmueli (2007).

As an example, we show in Tables 1 and 2 the values of the

expressions in (6) and (7) in terms of G, the lattice centering

factor, for the general and special reflections in all the non-

centrosymmetric orthorhombic space groups. Since, however,

only the point-group operators are of importance in this

context, it is sufficient to consider only the two relevant point

groups.

Each table contains the average intensity multiples for

general and special reflections in space groups based on the

point group in the table caption; G is the lattice-centering

factor and here can be 1, 2 or 4; Gh is the Hermann–Mauguin

symbol of the isotropy subgroup corresponding to each set of

reflections in the leftmost column; Stat(sym) is a or c if the set

of reflections is acentric or centric and Stat(h) is g or s if the set

of reflections is general or special, respectively.

From Tables 1 and 2, one can find the values of the averages

for any non-centrosymmetric orthorhombic space group. For

example, the values of the averages for the 00l reflection in

Table 2 are 4, 8 and 16 for the space groups Pna21, Ccc2 and

Fdd2, respectively.

It is in order to mention at this point that we have also

undertaken an explicit tabulation of hAvi=� and ðhD2i=�Þ1=2

for all low non-centrosymmetric space groups, presented in

Table 3 in the supplementary material.1 Our results are

entirely compatible with those of Shmueli & Wilson (2001).

Applications are presented in Flack & Bernardinelli (2008).

3.1. Derivation of hhhAviii and hhhD
2
iii for general and special

acentric reflections

To evaluate all the averages in equations (2) and (3), we first

consider the second-order terms in A and B, i.e. AjAk, BjBk

and AjBk. It follows from the assumed independence of atomic

contributions to the structure factor that, for j 6¼ k,

hAjAki ¼ hAjihAki ¼ 0 since the averages of cosine and sine

vanish. Likewise, for j 6¼ k, hBjBki ¼ hAjBki ¼ 0. This leaves

hA2
j i, hB

2
j i and hAjBji to be examined.

If one expands Aj and Bj, given in equation (1), one finds

Aj ¼
Pg

i¼1

cos½2�hTðPirj þ tiÞ�

¼
Pg

i¼1

½cosð2�hTPirjÞ cosð2�hT tiÞ � sinð2�hTPirjÞ sinð2�hT tiÞ�

¼
Pg

i¼1

½Ci cosð2�hTPirjÞ � Si sinð2�hTPirjÞ� ð8Þ

and

Bj ¼
Pg

i¼1

sin½2�hTðPirj þ tiÞ�

¼
Pg

i¼1

½sinð2�hTPirjÞ cosð2�hTtiÞ þ cosð2�hTPirjÞ sinð2�hT tiÞ�

¼
Pg

i¼1

½Ci sinð2�hTPirjÞ þ Si cosð2�hTPirjÞ�; ð9Þ

where

Ci ¼ cosð2�hT tiÞ and Si ¼ sinð2�hT tiÞ: ð10Þ

Let us start by evaluating hA2
j i.

A2
j ¼

Pg

m¼1

Pg

n¼1

½CmCn cosð2�hTPmrjÞ cosð2�hTPnrjÞ

þ SmSn sinð2�hTPmrjÞ sinð2�hTPnrjÞ

� CmSn cosð2�hTPmrjÞ sinð2�hTPnrjÞ

� SmCn sinð2�hTPmrjÞ cosð2�hTPnrjÞ�: ð11Þ

When one averages the double summation (11), the third and

fourth terms, which contain products of sine and cosine

functions, vanish. Further, since all the atoms are assumed to

be in general positions and be uniformly distributed

throughout the unit cell, the averages

hcosð2�hTPmrjÞ cosð2�hTPnrjÞi

and hsinð2�hTPmrjÞ sinð2�hTPnrjÞi ð12Þ

vanish unless

hTPmrj ¼ hTPnrj; ð13Þ
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Table 2
Classification of the reflections for point group mm2.

See the text for the definition of the symbols.

h jGhj Gh Stat(sym) Stat(h) hAvi=�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hD2i=�

p
hkl 1 1 a g G G
0kl 2 m a s 2G 2G
h0l 2 m a s 2G 2G
hk0 1 1 c g G 0
h00 2 m c s 2G 0
0k0 2 m c s 2G 0
00l 4 mm2 a s 4G 4G

Table 1
Classification of the reflections for point group 222.

See the text for the definition of the symbols.

h jGhj Gh Stat(sym) Stat(h) hAvi=�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hD2i=�

p
hkl 1 1 a g G G
0kl 1 1 c g G 0
h0l 1 1 c g G 0
hk0 1 1 c g G 0
h00 2 2 c s 2G 0
0k0 2 2 c s 2G 0
00l 2 2 c s 2G 0

1 Table 3 is available from the IUCr electronic archives (Reference: SH5073).
Services for accessing these archives are described at the back of the journal.



in which case each of the averages in (12) evaluates to 1=2.

Condition (13) can be rewritten as

ðPT
mhÞTrj ¼ ðP

T
n hÞTrj: ð14Þ

We shall now consider four cases.

3.1.1. Case 1: general reflections, P-type lattice. Condition

(14) now reduces to

Pm ¼ Pn: ð15Þ

Since the space group is based on a P-type lattice (G ¼ 1),

condition (15) is satisfied if m ¼ n. Each of these nonvanishing

terms thus evaluates to

1
2 ðCmCn þ SmSnÞ ¼

1
2 ½cosð2�hT tmÞ cosð2�hTtnÞ

þ sinð2�hT tmÞ sinð2�hTtnÞ�

¼ 1
2 cos½2�hTðtm � tnÞ�: ð16Þ

Since, however, m ¼ n, cos½2�hTðtm � tnÞ� ¼ 1 and we thus

find

hA2
j i ¼

1
2 g ð17Þ

and similarly

hB2
j i ¼

1
2 g: ð18Þ

3.1.2. Case 2: general reflections, centered lattice (1< G ��
4). If we reconsider equation (15), in this case m may be

different from n: indeed, if tr is a centering translation then the

centering operator applied to a space-group operator results

in adding tr to its translational part, the rotational part

remaining unchanged:

ðI; trÞðPm; tmÞ ¼ ðPm; tm þ trÞ � ðPn; tnÞ ð19Þ

and the number of centering translations associated with a

certain rotational part of a space-group operator is just G� 1

(note that, for G ¼ 1, tr ¼ 0). Summing up, for each value of m

in the non-vanishing terms of (11) there are G values of n

satisfying (15) and there are therefore in the double summa-

tion in (11) gG non-vanishing terms.

Each of these non-vanishing terms thus evaluates to equa-

tion (16). It is seen from (19) that for centered lattices the

difference tm � tn is a centering translation and it equals 0 if

G ¼ 1. The value of cos½2�hTðtm � tnÞ� is thus 1 for possible

reflections and�1 for systematic lattice absences from crystals

belonging to lattice types other than P. However, as pointed

out above, systematic absences are excluded from the aver-

aging process.

We thus find

hA2
j i ¼

1
2 gG ð20Þ

and, following the same argument as above,

hB2
j i ¼

1
2 gG: ð21Þ

3.1.3. Case 3: special reflections, P-type lattice. Condition

(14) reduces in this case to

PT
mh ¼ PT

n h: ð22Þ

Since the space group is based on a P-type lattice, condition

(22) is satisfied only if both PT
m and PT

n are in Gh. In that case,

for each value of m in the double summation of (11), there will

be exactly jGhj values of n satisfying condition (22). If we use

(10), each of these non-vanishing terms evaluates as given in

(16). Since, however, hTt must be an integer for reflections

that are not systematically absent, cos½2�hTðtm � tnÞ� equals 1

and we find

hA2
j i ¼

1
2 gjGhj ð23Þ

and, following similar reasoning,

hB2
j i ¼

1
2 gjGhj: ð24Þ

3.1.4. Case 4: special reflections, centered lattice (1 < G ��
4). If the space group is based on a centered lattice, condition

(22) is satisfied as before if both PT
m and PT

n are in Gh.

However, for a given m and n which satisfy (22), there will be

G� 1 further terms in the second summation which are

related to n by pure lattice-centering operations. Thus, for

each value of m, there will then be exactly GjGhj values of n

satisfying condition (22) and, since there are g values of m, we

finally obtain

hA2
j i ¼

1
2 gGjGhj ð25Þ

and, in a similar manner,

hB2
j i ¼

1
2 gGjGhj: ð26Þ

Equations (25) and (26) are the most general form for hA2
j i

and hB2
j i. They apply in all cases as for a P-type lattice G ¼ 1

and for a general reflection jGhj ¼ 1.

3.2. Derivation of hhhAviii and hhhD
2
iii for general and special

acentric reflections (continued)

To evaluate hAjBji, we again follow the same line of argu-

ment as for hA2
j i. However, corresponding to equation (16),

owing to differences in the trigonometric expansions, one finds

for the non-vanishing terms

1
2 ðCmSn � SmCnÞ ¼

1
2 ½cosð2�hT tmÞ sinð2�hT tnÞ

� sinð2�hT tmÞ cosð2�hTtnÞ�

¼ 1
2 sin½2�hTðtn � tmÞ�: ð27Þ

Since, however, this difference vector tn � tm is a zero vector

or a centering translation, then for possible reflections the

argument of the sine function is an integer multiple of � and

the sine function then vanishes. It follows that

hAjBji ¼ 0: ð28Þ

The next stage in the analysis is to consider relevant terms of

fourth order in A and B, i.e. AjAkBlBm, needed for the

evaluation of hD2i in equation (3). Once again it follows from

the assumed independence of the atomic contributions to the

structure factor that, if any one of the four indices j, k, l, m is

different from all the others, the mean value of the fourth-
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order term will be zero, e.g. for j 6¼ k, j 6¼ l and j 6¼ m,

hAjAkBlBmi ¼ hAjihAkBlBmi ¼ 0. As a consequence, only the

following terms with paired equal indices need further

consideration:

(a) hAjAjBjBji: it is unnecessary to evaluate this average as

its coefficient in equation (3) is identically zero and makes no

contribution to hD2i;

(b) hAjAlBjBli, hAjAlBlBji with j 6¼ l: owing to the inde-

pendence of atomic contributions to the structure factor and

making use of equation (28), these terms may be written as

hAjAlBjBli ¼ hAjBjihAlBli ¼ 0;

(c) hAjAjBlBli: again the independence of atomic contri-

butions and equations (25) and (26) lead to

hAjAkBlBmi ¼ hA
2
j B2

l i ¼ hA
2
j ihB

2
l i ¼ ð

1
2 gGjGhjÞ

2

¼ 1
4 g2G2jGhj

2: ð29Þ

If we now use equations (25) and (26) for hA2
j i þ hB

2
j i with

(2), we obtain

hAvi ¼ gGjGhj
PN=g

j¼1

ð f 2
j þ f 002j Þ ¼ GjGhj

PN
j¼1

ð f 2
j þ f 002j Þ � GjGhj�;

ð30Þ

where � is the value of hAvi obtained by Flack & Shmueli

(2007) for the triclinic space group P1, in agreement with

Wilson’s statistics.

If we now substitute (29) in (3), with index combination

j ¼ k, l ¼ m and j 6¼ l, we obtain

hD2
i ¼ 4g2G2

jGhj
2 PN=g

j¼1

PN=g

l¼1ðj6¼lÞ

ð f 002j f 2
l � 2fj f 00j fl f 00l þ f 2

j f 002l Þ

¼ 4G2jGhj
2 PN

j¼1

PN
l¼1

ð f 00j fl � fj f 00l Þ
2

ð31Þ

� G2jGhj
2�; ð32Þ

where � is the value of hD2i obtained by Flack & Shmueli

(2007) for the triclinic space group P1. Note that the restric-

tion j 6¼ l was removed from (31) since f 00j fl � fj f 00l ¼ 0 for

j ¼ l.

Hence, under the assumptions stated, the values of the

average intensity [equation (30)] and mean-square intensity

difference of Friedel opposites [equation (31)] are the same

for all the three-dimensional non-centrosymmetric space

groups. Of course, for centric reflections D ¼ 0 and this

derivation is valid only for non-centrosymmetric space groups.

3.3. Derivation of hhhAviii for centric reflections

We recall that a reflection h is centric if for some point-

group operator Pm we have PT
mh ¼ �h. As before, the non-

vanishing averages that need to be evaluated for hA2
j i and hB2

j i

are

hcosð2�hTPmrjÞ cosð2�hTPnrjÞi ð33Þ

and

hsinð2�hTPmrjÞ sinð2�hTPnrjÞi: ð34Þ

These averages vanish unless

hTPmrj ¼ �hTPnrj; ð35Þ

which implies that

PT
mh ¼ �PT

n h: ð36Þ

The ‘þ’ sign on the right-hand side of (36) leads to the same

expression for hAvi as in the acentric case. In the double

summation (2), there will now be additional non-vanishing

terms whenever m and n satisfy

PT
mh ¼ �PT

n h: ð37Þ

These additional terms evaluate to

1
2 ðCmCn � SmSnÞ ð38Þ

for hA2
j i and to

1
2 ðSmSn � CmCnÞ ð39Þ

for hB2
j i, so that a full cancellation of the additional non-

vanishing terms occurs. Therefore, the centric character of a

reflection does not change the average intensity of Friedel

opposites, which is again

hAvi ¼ gGjGhj
PN=g

j¼1

ð f 2
j þ f

002
j Þ ¼ GjGhj�: ð40Þ

However, for centric reflections, Friedel opposites are iden-

tical and therefore D ¼ 0.

4. A rederivation of hhhD2
iii by the moment method

As pointed out in the Introduction, the mean-square intensity

difference of Friedel opposites depends on low moments of

the magnitude of the structure factor, which are known to

depend on space-group symmetry. The foregoing derivations

show that for hD2i this is not the case and we thought it to be

interesting to rederive directly hD2i from its definition in terms

of the moments by a method similar to that used by Wilson

(1978). The simplest case of general reflections and a P-type

lattice (G ¼ 1) will be assumed since it is sufficient for the

present purpose. We recall that the difference intensity of

Friedel opposites is given by

DðhÞ ¼ jFðhÞj2 � jFð�hÞj2

and its second moment, in the fixed-index approach, is

hD2ðhÞi ¼ hðjFðhÞj2 � jFð�hÞj2Þ2i

¼ hjFðhÞj4i � 2hjFðhÞj2jFð�hÞj2i þ hjFð�hÞj4i: ð41Þ

Following Wilson (1978) and modifying his notation for

complex scattering factors, for compatibility with other parts

of this paper, we can write

FðhÞ ¼
PN=g

i¼1

fiJiðhÞ;
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where fi ¼ fi þ if 00i and fi is the real part of the scattering factor

of atom i, including the real part of the resonant scattering

contribution, and

JiðhÞ ¼
Pg

m¼1

exp½2�ihTðPmri þ tmÞ�: ð42Þ

The fourth moment of jFðhÞj is

hjFðhÞj4i ¼
PN=g

i¼1

PN=g

j¼1

PN=g

k¼1

PN=g

l¼1

fif
	
j fkf	l hJiðhÞJ

	
j ðhÞJkðhÞJ

	
l ðhÞi: ð43Þ

As shown by Wilson (1978), for non-centrosymmetric struc-

tures those terms which survive on averaging have index

combinations (i) i ¼ j ¼ k ¼ l, (ii) i ¼ j and k ¼ l with j 6¼ k

and (iii) i ¼ l and j ¼ k with i 6¼ k. Hence,

hjFðhÞj4i ¼
PN=g

i¼1

jfij
4hjJiðhÞj

4i

þ 2
PN=g

i¼1

PN=g

k¼1ði 6¼kÞ

jfij
2
jfkj

2hjJiðhÞj
2ihjJkðhÞj

2i: ð44Þ

Following Shmueli & Weiss (1995), we can write

hjJiðhÞj
2
i ¼

Pg

s¼1

Pg

u¼1

hexp½2�ihTðPs � PuÞri�i exp½2�ihTðts � tuÞ�:

ð45Þ

The inner average in this equation vanishes unless Ps � Pu is a

zero matrix, in which case it equals unity. It therefore follows

that

hjJiðhÞj
2i ¼

Pg

s¼1

Pg

u¼1

�su exp½2�ihTðts � tuÞ� ¼ g: ð46Þ

We can now rewrite the fourth moment of jFðhÞj as

hjFðhÞj4i ¼
PN=g

i¼1

jfij
4
hjJiðhÞj

4i þ 2g2
PN=g

i¼1

PN=g

k¼1ði6¼kÞ

jfij
2
jfkj

2

¼
PN=g

i¼1

jfij
4
hjJiðhÞj

4
i þ 2

PN
i¼1

PN
k¼1ði6¼kÞ

jfij
2jfkj

2: ð47Þ

Hence, the fourth moment of jFðhÞj consists of a single

summation which is well known to be space-group dependent

(e.g. Wilson, 1978) and a double summation which is space-

group independent. Let us consider the remaining two

moments in (41). The fourth moment of jFð�hÞj is given by

hjFð�hÞj4i ¼
PN=g

i¼1

PN=g

j¼1

PN=g

k¼1

PN=g

l¼1

fif
	
j fkf	l hJið�hÞJ	j ð�hÞJkð�hÞJ	l ð�hÞi:

Since, from (42), Jið�hÞ ¼ J	i ðhÞ and J	i ð�hÞ ¼ JiðhÞ, there is in

practice no difference between the fourth moments of jFðhÞj

and jFð�hÞj. Hence,

hjFðhÞj4i þ hjFð�hÞj4i

¼ 2
PN=g

i¼1

jfij
4hjJiðhÞj

4i þ 4
PN
i¼1

PN
k¼1ði6¼kÞ

jfij
2jfkj

2: ð48Þ

We now consider the remaining mixed term:

�2hjFðhÞj2jFð�hÞj2i.

� 2hjFðhÞj2jFð�hÞj2i

¼ �2
PN=g

i¼1

PN=g

j¼1

PN=g

k¼1

PN=g

l¼1

fif
	
j fkf	l hJiðhÞJ

	
j ðhÞJkð�hÞJ	l ð�hÞi

¼ �2
PN=g

i¼1

PN=g

j¼1

PN=g

k¼1

PN=g

l¼1

fif
	
j fkf	l hJiðhÞJ

	
j ðhÞJ

	
kðhÞJlðhÞi: ð49Þ

The index combinations of the surviving terms in the average

in (49) are: (i) i ¼ j ¼ k ¼ l, (ii) i ¼ j, k ¼ l with i 6¼ k and (iii)

i ¼ k, j ¼ l with i 6¼ j. Index combination (i) contributes

�2
PN=g

i¼1

jfij
4hjJiðhÞj

4i ð50Þ

and, if we compare (50) with (48), it is seen that the summa-

tions over the space-group-dependent fourth moments of

jJiðhÞj cancel out. This is a significant result. Index combina-

tion (ii) contributes

�2
PN=g

i¼1

PN=g

k¼1ðk6¼iÞ

jfij
2
jfkj

2hjJiðhÞj
2ihjJkðhÞj

2i

and this reduces, analogously to (47), to

�2
PN
i¼1

PN
k¼1ðk 6¼iÞ

jfij
2jfkj

2: ð51Þ

Index combination (iii) contributes

�2
PN=g

i¼1

PN=g

j¼1ðj6¼iÞ

f2
i f	2j hjJiðhÞj

2ihjJjðhÞj
2i:

Each of the second moments of jJj is equal, as before, to g –

the number of asymmetric units in the unit cell. However, it

must be noted that the product f2
i f	2j is complex and, since this

contribution to hD2ðhÞi is of necessity real, we must take the

real part of this product only. Further, in order to compare this

contribution with others, we shall change the dummy index j to

k. The contribution of index combination (iii) is therefore

written as

�2
PN
i¼1

PN
k¼1ðk 6¼iÞ

Rðf2
i f	2k Þ: ð52Þ

If we combine (52), (51) and (50) with (48), (41) becomes

hD2ðhÞi ¼ 2
PN
i¼1

PN
k¼1ðk 6¼iÞ

½ðjfij
2jfkj

2 �Rðf2
i f	2k Þ�

¼ 2
PN
i¼1

PN
k¼1ðk 6¼iÞ

fð f 2
i þ f 002i Þð f

2
k þ f 002k Þ

� R½ð fi þ if 00i Þ
2
ð fk � if 00k Þ

2
�g

¼ 4
PN
i¼1

PN
k¼1

ð fif
00
k � f 00i fkÞ

2; ð53Þ

which is the same result as was obtained in the previous

section for G ¼ 1. Note that the restriction i 6¼ k was removed

from (53) since fi f 00k � f 00i fk ¼ 0 for i ¼ k.

This direct consideration of moments leads to a correct

expression for hD2ðhÞi and shows clearly that hD2ðhÞi, under

the assumptions stated in this article, is space-group inde-
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pendent. Of course, for centric reflections DðhÞ ¼ 0 and this

derivation is valid only for non-centrosymmetric space groups.

5. Concluding remarks

Specifically, we have established that there is no enhancement

of the root-mean-square Friedel intensity difference of

general reflections in any non-centrosymmetric space group

presuming, of course, the absence of centrosymmetric or other

symmetric substructures. We stress again the significant result

that the space-group-dependent fourth moments of jJiðhÞj

cancel out in the evaluation of hD2i. Moreover, we have been

able to show that, although certain special reflections have an

increased root-mean-square Friedel intensity difference, this is

due to an equivalent increase in the average intensity rather

than to an effect specific to the difference intensity. More

generally, the present work, taken together with those of Flack

& Shmueli (2007) and Flack & Bernardinelli (2008), demon-

strates the tremendous advantage to be drawn from analyzing

and using the average and difference intensity of Friedel

opposites rather than the intensities of reflections hkl and �hh �kk�ll
taken separately. Further theoretical and practical develop-

ments of these ideas are to be expected.

APPENDIX A
Derivation of hhhAviii and hhhD

2
iii for P212121 and some

related space groups

This Appendix shows a derivation of the required intensity

statistics for the space group P212121, starting from tabulated

trigonometric structure factors (t.s.f.’s), the tabulation given by

Shmueli (2001) being used. It will be seen that this derivation

encompasses several related space groups as well. Table

A1.4.3.4 (Shmueli, 2001) shows that the t.s.f.’s for P212121 are

as in the following table.

Or, briefly,

A ¼ 4wpqr and B ¼ 4WPQR;

where w ¼ �1, W ¼ �1 and each of p; q; r;P;Q;R may be a

cosine (c) or sine (s) function of 2�hx, 2�ky or 2�lz. The

relationship of the products pqr and PQR seen in the above

table (p ¼ c$ P ¼ s etc.) is, in fact, valid for all the space

groups based on the point group 222.

If we use equation (2), we have

hAjAki ¼ 16hwjpjqjrjwkpkqkrki

and a similar expression for hBjBki. In the averaging, we need

to retain only even powers of cosine and sine, which occur only

when j ¼ k. We shall also allow for the independence of

atomic contributions to the structure factor. Hence,

hAjAki ¼ hA
2
j i

¼ 16h p2
j q2

j r2
j i

¼ 16h p2
j ihq

2
j ihr

2
j i

¼ 2

since hc2i ¼ hs2i ¼ 1
2. Likewise, hBjBki ¼ hB

2
j i ¼ 2. Equation

(2) thus reduces to

hAvi ¼ 4
PN=4

j¼1

ð f 2
j þ f 002j Þ

¼
PN
j¼1

ð f 2
j þ f 002j Þ

� � ð54Þ

in agreement with Wilson’s statistics.

For hD2i, the relevant average, appearing in (3), is

hAjAkBlBmi ¼ h4wjpjqjrj4wkpkqkrk4WlPlQlRl4WmPmQmRmi

and we need to retain even powers of cosine and sine which, in

this case, limit the index combinations to (i) j ¼ k ¼ l ¼ m

and (ii) j ¼ k, l ¼ m with j 6¼ l. For combination (i), the

coefficient of the average in (3) is identically equal to zero, so

only combination (ii) contributes as

hA2
j B2

l i ¼ 44
hp2

j q2
j r2

j P2
l Q2

l R2
l i

¼ 256hp2
j ihq

2
j ihr

2
j ihP

2
l ihQ

2
l ihR

2
l i

¼ 4:

Consequently, (3) reduces to

hD2i ¼ ð4� 16Þ
PN=4

j¼1

PN=4

ðl 6¼jÞ¼1

ð f 00j fl � fj f 00l Þ
2

¼ 4
PN
j¼1

PN
l¼1

ð f 00j fl � fj f 00l Þ
2: ð55Þ

The restriction on l 6¼ j is, of course, now redundant, since the

factor ð f 00j fl � fj f 00l Þ
2
¼ 0 for l ¼ j. The derivation presented in

this Appendix is also valid for all the orthorhombic space

groups based on the point group 222 and on a P-type lattice.

It is seen from equations (54) and (55) that the average

intensity and mean-square intensity of Friedel opposites

obtained here are the same as those obtained for P1 (Flack &

Shmueli, 2007) in the absence of symmetric substructures.

APPENDIX B
Examples and discussion of isotropy subgroups

We give an example of the use of isotropy subgroups for a

structure in point group mm2. The operators of this point

group are I or identity, mx or mirror reflection in a plane

perpendicular to [100], my or mirror reflection in a plane

perpendicular to [010] and 2z or twofold rotation about an axis

parallel to [001]. The matrix representations of these opera-

tors, on the standard orthorhombic basis, are
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Parity A B

hþ k ¼ 2n; kþ l ¼ 2n 4ccc �4sss
hþ k ¼ 2n; kþ l ¼ 2nþ 1 �4css 4scc
hþ k ¼ 2nþ 1; kþ l ¼ 2n �4scs 4csc
hþ k ¼ 2nþ 1; kþ l ¼ 2nþ 1 �4ssc 4ccs



I :

1 0 0

0 1 0

0 0 1

0
B@

1
CA; mx :

�11 0 0

0 1 0

0 0 1

0
B@

1
CA;

my :

1 0 0

0 �11 0

0 0 1

0
B@

1
CA; 2z :

�11 0 0

0 �11 0

0 0 1

0
B@

1
CA:

(a) For a reflection h with each of h, k and l not equal to

zero, the identity I is the only operator obeying PTh ¼ h, so

Gh ¼ fIg and jGhj ¼ 1. There is no operator for which

PTh ¼ �h. So, h with each of h, k and l 6¼ 0 is a general

acentric reflection.

(b) For a reflection h with l ¼ 0 and h and k 6¼ 0, i.e. hk0, I is

the only operator obeying PTh ¼ h, so Gh ¼ fIg with jGhj ¼ 1.

Moreover, for 2z, PTh ¼ �h. So hk0 is a general centric

reflection.

(c) For a reflection h with h ¼ 0, and k and l 6¼ 0, i.e. 0kl,

only I and mx obey PTh ¼ h. Hence, Gh ¼ fI;mxg, jGhj ¼ 2.

There is no operator for which PTh ¼ �h. Thus, 0kl is a

special acentric reflection.

An isotropy subgroup can be one of the following ten non-

centrosymmetric point groups: 1, 2, 3, 4, 6, m, mm2, 3m, 4mm

and 6mm. One comes to this conclusion by noting that the

relation PTh ¼ h defines h as being an eigenvector of P for

which the eigenvalue is þ1. If P is a pure rotation, it has only

one eigenvalue of þ1 with the eigenvector being parallel to

the rotation axis. Consequently, all rotation operators in the

isotropy subgroup must have parallel axes, excluding point

groups such as 222 and 422. Reflection m ¼ �22 is the only

rotoinversion with eigenvalue þ1 and it has two of them with

the corresponding eigenvectors lying in the mirror plane. This

allows isotropy subgroups to contain one or several m

operators so long as all the mirror planes intersect in a single

line which is a rotation axis of order 2, 3, 4 or 6.

Tables 1 and 2 in the text contain complete tabulations for

the point groups 222 and mm2.

It is interesting to point out that the order of the isotropy

subgroup has some connections of importance with the

weighted reciprocal lattice. Thus, Table 2.1.3.3 in Volume B of

International Tables (Shmueli & Wilson, 2001) concisely

presents average intensity multiples for most special reflec-

tions in the 32 crystallographic point groups. However, these

multiples seem to be nothing but the orders of the isotropy

subgroups of the corresponding special reflections, albeit the

multiples were obtained from other considerations. An

important practical application of these average intensity

multiples is the calculation of normalized structure factors of

special reflections, where enhancement of average intensity

must be taken into account if any accuracy is aimed at. They

are there denoted by the symbol "h and a comprehensive table

of these quantities, for all the point groups, was given by

Iwasaki & Ito (1977).

To conclude, we note that more familiar definitions, but less

well suited to the derivations made in the body of this paper,

are, for example, (i) the magnitude of the structure factor of a

centric or acentric reflection obeys respectively the centric or

acentric probability distribution and (ii) a reflection is said to

be centric or acentric if the phase of its structure factor is

restricted or unrestricted, respectively.
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